Training-induced changes in inhibitory control network activity.

نویسندگان

  • Elliot T Berkman
  • Lauren E Kahn
  • Junaid S Merchant
چکیده

Despite extensive research on inhibitory control (IC) and its neural systems, the questions of whether IC can be improved with training and how the associated neural systems change are understudied. Behavioral evidence suggests that performance on IC tasks improves with training but that these gains do not transfer to other tasks, and almost nothing is known about how activation in IC-related brain regions changes with training. Human participants were randomly assigned to receive IC training (N = 30) on an adaptive version of the stop-signal task (SST) or an active sham-training (N = 30) during 10 sessions across 3 weeks. Neural activation during the SST before and after training was assessed in both groups using functional magnetic resonance imaging. Performance on the SST improved significantly more in the training group than in the control group. The pattern of neuroimaging results was consistent with a proactive control model such that activity in key parts of the IC network shifted earlier in time within the trial, becoming associated with cues that anticipated the upcoming need for IC. Specifically, activity in the inferior frontal gyrus decreased during the implementation of control (i.e., stopping) and increased during cues that preceded the implementation of IC from pretraining to post-training. Also, steeper behavioral improvement in the training group correlated with activation increases during the cue phase and decreases during implementation in the dorsolateral prefrontal cortex. These results are the first to uncover the neural pathways for training-related improvements in IC and can explain previous null findings of IC training transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of endurance training with cinnamon bark extract on antioxidant activity levels and cardiac index in streptozotocin- (STZ) induced DM male rats

Background: Diabetes may be associated with an imbalance between the protective effects of antioxidants and increased production of free radicals. Oxidative stress also appears to contribute to the pathogenesis of diabetic complications. In this study the effect of endurance exercise with cinnamon bark extract on antioxidant activity levels and cardiac index in streptozotocin- (STZ) induced DM ...

متن کامل

Differential patterns of functional and structural plasticity within and between inferior frontal gyri support training-induced improvements in inhibitory control proficiency.

Ample evidence indicates that inhibitory control (IC), a key executive component referring to the ability to suppress cognitive or motor processes, relies on a right-lateralized fronto-basal brain network. However, whether and how IC can be improved with training and the underlying neuroplastic mechanisms remains largely unresolved. We used functional and structural magnetic resonance imaging t...

متن کامل

Brain dynamics underlying training-induced improvement in suppressing inappropriate action.

Inhibitory control, a core component of executive functions, refers to our ability to suppress intended or ongoing cognitive or motor processes. Mostly based on Go/NoGo paradigms, a considerable amount of literature reports that inhibitory control of responses to "NoGo" stimuli is mediated by top-down mechanisms manifesting ∼200 ms after stimulus onset within frontoparietal networks. However, w...

متن کامل

Short-term training in the Go/Nogo task: behavioural and neural changes depend on task demands.

Neural activity underlying executive functions is subject to modulation as a result of increasing cognitive demands and practice. In the present study, we examined these modulatory effects by varying task difficulty, as manipulated by reaction time deadline (RTD), on inhibitory control during a single Go/Nogo training session (8 blocks; 70% Go). Sixty adults were randomly assigned to one of thr...

متن کامل

Neurofeedback training effects on inhibitory brain activation in ADHD: A matter of learning?

Neurofeedback training (NF) is a promising non-pharmacological treatment for ADHD that has been associated with improvement of attention-deficit/hyperactivity disorder (ADHD)-related symptoms as well as changes in electrophysiological measures. However, the functional localization of neural changes following NF compared to an active control condition, and of successful learning during training ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 1  شماره 

صفحات  -

تاریخ انتشار 2014